MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. S32520 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while S32520 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
270
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
28
Fatigue Strength, MPa 90
460
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 190
560
Tensile Strength: Ultimate (UTS), MPa 250
860
Tensile Strength: Yield (Proof), MPa 190
630

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.0
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 1040
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
960
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 42
4.1
Thermal Shock Resistance, points 12
24

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 2.0 to 4.0
0.5 to 2.0
Iron (Fe), % 0 to 1.2
57.3 to 66.8
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
5.5 to 8.0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.5 to 10.5
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0