MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. S44625 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
22
Fatigue Strength, MPa 90
240
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 190
370
Tensile Strength: Ultimate (UTS), MPa 250
590
Tensile Strength: Yield (Proof), MPa 190
360

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
310
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 42
4.6
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 2.0 to 4.0
0 to 0.2
Iron (Fe), % 0 to 1.2
69.4 to 74.3
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 10.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0