MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. ACI-ASTM CA15M Steel

333.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
210
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
20
Fatigue Strength, MPa 83 to 100
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 230 to 280
690
Tensile Strength: Yield (Proof), MPa 130 to 210
510

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100 to 140
27
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.1
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
670
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
25
Strength to Weight: Bending, points 29 to 34
22
Thermal Diffusivity, mm2/s 42 to 57
7.2
Thermal Shock Resistance, points 11 to 13
25

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
82.1 to 88.4
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.15 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 10
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0