MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. ASTM A369 Grade FP91

333.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0 to 2.0
19
Fatigue Strength, MPa 83 to 100
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Shear Strength, MPa 190 to 230
410
Tensile Strength: Ultimate (UTS), MPa 230 to 280
670
Tensile Strength: Yield (Proof), MPa 130 to 210
460

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
24
Strength to Weight: Bending, points 29 to 34
22
Thermal Diffusivity, mm2/s 42 to 57
6.9
Thermal Shock Resistance, points 11 to 13
18

Alloy Composition

Aluminum (Al), % 81.8 to 89
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
87.3 to 90.3
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 10
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0