MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. AWS E308H

333.0 aluminum belongs to the aluminum alloys classification, while AWS E308H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is AWS E308H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 230 to 280
620

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100 to 140
16
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
3.2
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1040
150

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
22
Strength to Weight: Bending, points 29 to 34
21
Thermal Diffusivity, mm2/s 42 to 57
4.2
Thermal Shock Resistance, points 11 to 13
16

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.0 to 4.0
0 to 0.75
Iron (Fe), % 0 to 1.0
62.9 to 72.5
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.5
9.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0