MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. AWS E385

333.0 aluminum belongs to the aluminum alloys classification, while AWS E385 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 230 to 280
580

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 100 to 140
14
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.6
5.8
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 1040
200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
20
Strength to Weight: Bending, points 29 to 34
19
Thermal Diffusivity, mm2/s 42 to 57
3.6
Thermal Shock Resistance, points 11 to 13
15

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 3.0 to 4.0
1.2 to 2.0
Iron (Fe), % 0 to 1.0
41.8 to 50.1
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0 to 0.5
24 to 26
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 10
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0