MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.0254 Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.0254 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.0254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
120
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0 to 2.0
27
Fatigue Strength, MPa 83 to 100
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 190 to 230
280
Tensile Strength: Ultimate (UTS), MPa 230 to 280
430
Tensile Strength: Yield (Proof), MPa 130 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
15
Strength to Weight: Bending, points 29 to 34
16
Thermal Diffusivity, mm2/s 42 to 57
13
Thermal Shock Resistance, points 11 to 13
14

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.0
97.2 to 100
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 10
0 to 0.35
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0