MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.4310 Stainless Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
14 to 45
Fatigue Strength, MPa 83 to 100
240 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190 to 230
510 to 550
Tensile Strength: Ultimate (UTS), MPa 230 to 280
730 to 900
Tensile Strength: Yield (Proof), MPa 130 to 210
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100 to 140
15
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.9
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1040
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
170 to 830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
26 to 32
Strength to Weight: Bending, points 29 to 34
23 to 27
Thermal Diffusivity, mm2/s 42 to 57
4.0
Thermal Shock Resistance, points 11 to 13
15 to 18

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
66.4 to 78
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.5
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 10
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0