MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.4421 Stainless Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.4421 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
11 to 17
Fatigue Strength, MPa 83 to 100
380 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 230 to 280
880 to 1100
Tensile Strength: Yield (Proof), MPa 130 to 210
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 520
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100 to 140
16
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.6
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 1040
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
960 to 2270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
31 to 39
Strength to Weight: Bending, points 29 to 34
26 to 30
Thermal Diffusivity, mm2/s 42 to 57
4.4
Thermal Shock Resistance, points 11 to 13
31 to 39

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
74.4 to 80.5
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.5
4.0 to 5.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.0 to 10
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0

Comparable Variants