MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.4646 Stainless Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
220
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
34
Fatigue Strength, MPa 83 to 100
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190 to 230
500
Tensile Strength: Ultimate (UTS), MPa 230 to 280
750
Tensile Strength: Yield (Proof), MPa 130 to 210
430

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 590
1390
Melting Onset (Solidus), °C 530
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.8
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
27
Strength to Weight: Bending, points 29 to 34
24
Thermal Shock Resistance, points 11 to 13
16

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 3.0 to 4.0
1.5 to 3.0
Iron (Fe), % 0 to 1.0
59 to 67.3
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 8.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0