MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.4658 Stainless Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
260
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.0 to 2.0
28
Fatigue Strength, MPa 83 to 100
530
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
81
Shear Strength, MPa 190 to 230
580
Tensile Strength: Ultimate (UTS), MPa 230 to 280
900
Tensile Strength: Yield (Proof), MPa 130 to 210
730

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
16
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
4.5
Embodied Energy, MJ/kg 140
61
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
240
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
1280
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 22 to 27
32
Strength to Weight: Bending, points 29 to 34
26
Thermal Diffusivity, mm2/s 42 to 57
4.3
Thermal Shock Resistance, points 11 to 13
24

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 1.0
50.9 to 63.7
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0