MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.4749 Stainless Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
16
Fatigue Strength, MPa 83 to 100
190
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
80
Shear Strength, MPa 190 to 230
370
Tensile Strength: Ultimate (UTS), MPa 230 to 280
600
Tensile Strength: Yield (Proof), MPa 130 to 210
320

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 100 to 140
17
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.6
2.5
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
80
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 22 to 27
22
Strength to Weight: Bending, points 29 to 34
21
Thermal Diffusivity, mm2/s 42 to 57
4.6
Thermal Shock Resistance, points 11 to 13
22

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
68.5 to 73.7
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0