MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 2.4816 Nickel

333.0 aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
170
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0 to 2.0
34
Fatigue Strength, MPa 83 to 100
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Shear Strength, MPa 190 to 230
470
Tensile Strength: Ultimate (UTS), MPa 230 to 280
700
Tensile Strength: Yield (Proof), MPa 130 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 520
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 590
1370
Melting Onset (Solidus), °C 530
1320
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 100 to 140
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 7.6
9.0
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1040
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 22 to 27
23
Strength to Weight: Bending, points 29 to 34
21
Thermal Diffusivity, mm2/s 42 to 57
3.8
Thermal Shock Resistance, points 11 to 13
20

Alloy Composition

Aluminum (Al), % 81.8 to 89
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 3.0 to 4.0
0 to 0.5
Iron (Fe), % 0 to 1.0
6.0 to 10
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0