MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 2.4889 Nickel

333.0 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
39
Fatigue Strength, MPa 83 to 100
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190 to 230
490
Tensile Strength: Ultimate (UTS), MPa 230 to 280
720
Tensile Strength: Yield (Proof), MPa 130 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 520
350
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 530
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100 to 140
13
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.6
6.9
Embodied Energy, MJ/kg 140
98
Embodied Water, L/kg 1040
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
25
Strength to Weight: Bending, points 29 to 34
22
Thermal Diffusivity, mm2/s 42 to 57
3.4
Thermal Shock Resistance, points 11 to 13
19

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.0
21 to 25
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.0 to 10
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0