MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. G-CoCr28 Cobalt

333.0 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.0 to 2.0
6.7
Fatigue Strength, MPa 83 to 100
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
83
Tensile Strength: Ultimate (UTS), MPa 230 to 280
560
Tensile Strength: Yield (Proof), MPa 130 to 210
260

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 590
1330
Melting Onset (Solidus), °C 530
1270
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
8.5
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
100
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.6
6.2
Embodied Energy, MJ/kg 140
84
Embodied Water, L/kg 1040
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
31
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
19
Strength to Weight: Bending, points 29 to 34
19
Thermal Diffusivity, mm2/s 42 to 57
2.2
Thermal Shock Resistance, points 11 to 13
14

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
9.7 to 24.5
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 10
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0