MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. SAE-AISI 1086 Steel

333.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1086 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
220 to 260
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0 to 2.0
11
Fatigue Strength, MPa 83 to 100
300 to 360
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Shear Strength, MPa 190 to 230
450 to 520
Tensile Strength: Ultimate (UTS), MPa 230 to 280
760 to 870
Tensile Strength: Yield (Proof), MPa 130 to 210
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 520
240
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
50
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
610 to 890
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
27 to 31
Strength to Weight: Bending, points 29 to 34
24 to 26
Thermal Diffusivity, mm2/s 42 to 57
14
Thermal Shock Resistance, points 11 to 13
26 to 30

Alloy Composition

Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.8 to 0.93
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
98.5 to 98.9
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.5
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 10
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0