MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. N07776 Nickel

333.0 aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0 to 2.0
39
Fatigue Strength, MPa 83 to 100
220
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 28
79
Shear Strength, MPa 190 to 230
470
Tensile Strength: Ultimate (UTS), MPa 230 to 280
700
Tensile Strength: Yield (Proof), MPa 130 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 590
1550
Melting Onset (Solidus), °C 530
1500
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
85
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 7.6
15
Embodied Energy, MJ/kg 140
210
Embodied Water, L/kg 1040
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 22 to 27
22
Strength to Weight: Bending, points 29 to 34
20
Thermal Shock Resistance, points 11 to 13
20

Alloy Composition

Aluminum (Al), % 81.8 to 89
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
0 to 24.5
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0 to 0.5
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0