MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. EN 1.7362 Steel

336.0 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 130
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.5
21 to 22
Fatigue Strength, MPa 80 to 93
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Shear Strength, MPa 190 to 250
320 to 370
Tensile Strength: Ultimate (UTS), MPa 250 to 320
510 to 600
Tensile Strength: Yield (Proof), MPa 190 to 300
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 210
510
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 95
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1010
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
100 to 340
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 25 to 32
18 to 21
Strength to Weight: Bending, points 32 to 38
18 to 20
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 12 to 16
14 to 17

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0.5 to 1.5
0 to 0.3
Iron (Fe), % 0 to 1.2
91.5 to 95.2
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 2.0 to 3.0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0