MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. EN 1.8063 Steel

336.0 aluminum belongs to the aluminum alloys classification, while EN 1.8063 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is EN 1.8063 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 130
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 75
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 250 to 320
670 to 1980

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 570
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
42
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.6
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.9
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1010
51

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 25 to 32
24 to 71
Strength to Weight: Bending, points 32 to 38
22 to 45
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 12 to 16
20 to 59

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0.46 to 0.54
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 0 to 1.2
95.2 to 96.4
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0.7 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.35
Nickel (Ni), % 2.0 to 3.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
1.4 to 1.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0