MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. EN AC-46200 Aluminum

Both 336.0 aluminum and EN AC-46200 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 130
82
Elastic (Young's, Tensile) Modulus, GPa 75
73
Elongation at Break, % 0.5
1.1
Fatigue Strength, MPa 80 to 93
87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 250 to 320
210
Tensile Strength: Yield (Proof), MPa 190 to 300
130

Thermal Properties

Latent Heat of Fusion, J/g 570
510
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 570
620
Melting Onset (Solidus), °C 540
540
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
28
Electrical Conductivity: Equal Weight (Specific), % IACS 95
88

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 7.9
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1010
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 25 to 32
21
Strength to Weight: Bending, points 32 to 38
28
Thermal Diffusivity, mm2/s 48
44
Thermal Shock Resistance, points 12 to 16
9.5

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
82.6 to 90.3
Copper (Cu), % 0.5 to 1.5
2.0 to 3.5
Iron (Fe), % 0 to 1.2
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.7 to 1.3
0.050 to 0.55
Manganese (Mn), % 0 to 0.35
0.15 to 0.65
Nickel (Ni), % 2.0 to 3.0
0 to 0.35
Silicon (Si), % 11 to 13
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.35
0 to 1.2
Residuals, % 0
0 to 0.25