MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. Grade 33 Titanium

336.0 aluminum belongs to the aluminum alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.5
23
Fatigue Strength, MPa 80 to 93
250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
41
Shear Strength, MPa 190 to 250
240
Tensile Strength: Ultimate (UTS), MPa 250 to 320
390
Tensile Strength: Yield (Proof), MPa 190 to 300
350

Thermal Properties

Latent Heat of Fusion, J/g 570
420
Maximum Temperature: Mechanical, °C 210
320
Melting Completion (Liquidus), °C 570
1660
Melting Onset (Solidus), °C 540
1610
Specific Heat Capacity, J/kg-K 890
540
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 19
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 7.9
33
Embodied Energy, MJ/kg 140
530
Embodied Water, L/kg 1010
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
86
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
590
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 25 to 32
24
Strength to Weight: Bending, points 32 to 38
26
Thermal Diffusivity, mm2/s 48
8.7
Thermal Shock Resistance, points 12 to 16
30

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0.1 to 0.2
Copper (Cu), % 0.5 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.2
0 to 0.3
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 2.0 to 3.0
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 11 to 13
0
Titanium (Ti), % 0 to 0.25
98.1 to 99.52
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.4