MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. C40500 Penny Bronze

336.0 aluminum belongs to the aluminum alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.5
3.0 to 49
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
43
Shear Strength, MPa 190 to 250
210 to 310
Tensile Strength: Ultimate (UTS), MPa 250 to 320
270 to 540
Tensile Strength: Yield (Proof), MPa 190 to 300
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 570
200
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 570
1060
Melting Onset (Solidus), °C 540
1020
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
41
Electrical Conductivity: Equal Weight (Specific), % IACS 95
42

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 1010
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
28 to 1200
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 25 to 32
8.5 to 17
Strength to Weight: Bending, points 32 to 38
10 to 17
Thermal Diffusivity, mm2/s 48
48
Thermal Shock Resistance, points 12 to 16
9.5 to 19

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Copper (Cu), % 0.5 to 1.5
94 to 96
Iron (Fe), % 0 to 1.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 2.0 to 3.0
0
Silicon (Si), % 11 to 13
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
2.1 to 5.3
Residuals, % 0
0 to 0.5