MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. C72700 Copper-nickel

336.0 aluminum belongs to the aluminum alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Elongation at Break, % 0.5
4.0 to 36
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
44
Shear Strength, MPa 190 to 250
310 to 620
Tensile Strength: Ultimate (UTS), MPa 250 to 320
460 to 1070
Tensile Strength: Yield (Proof), MPa 190 to 300
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 570
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 570
1100
Melting Onset (Solidus), °C 540
930
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 120
54
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
11
Electrical Conductivity: Equal Weight (Specific), % IACS 95
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 7.9
4.0
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 1010
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
1420 to 4770
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 25 to 32
14 to 34
Strength to Weight: Bending, points 32 to 38
15 to 26
Thermal Diffusivity, mm2/s 48
16
Thermal Shock Resistance, points 12 to 16
16 to 38

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Copper (Cu), % 0.5 to 1.5
82.1 to 86
Iron (Fe), % 0 to 1.2
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.7 to 1.3
0 to 0.15
Manganese (Mn), % 0 to 0.35
0.050 to 0.3
Nickel (Ni), % 2.0 to 3.0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 11 to 13
0
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0 to 0.5
Residuals, % 0
0 to 0.3