MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. C74000 Nickel Silver

336.0 aluminum belongs to the aluminum alloys classification, while C74000 nickel silver belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is C74000 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
44
Tensile Strength: Ultimate (UTS), MPa 250 to 320
380 to 590

Thermal Properties

Latent Heat of Fusion, J/g 570
200
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 570
990
Melting Onset (Solidus), °C 540
950
Specific Heat Capacity, J/kg-K 890
390
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
40
Electrical Conductivity: Equal Weight (Specific), % IACS 95
42

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 7.9
3.4
Embodied Energy, MJ/kg 140
54
Embodied Water, L/kg 1010
310

Common Calculations

Stiffness to Weight: Axial, points 15
7.7
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 25 to 32
13 to 19
Strength to Weight: Bending, points 32 to 38
14 to 18
Thermal Shock Resistance, points 12 to 16
13 to 19

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Copper (Cu), % 0.5 to 1.5
69 to 73.5
Iron (Fe), % 0 to 1.2
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 2.0 to 3.0
9.0 to 11
Silicon (Si), % 11 to 13
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
14.2 to 22
Residuals, % 0
0 to 0.5