MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. N06975 Nickel

336.0 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.5
45
Fatigue Strength, MPa 80 to 93
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Shear Strength, MPa 190 to 250
470
Tensile Strength: Ultimate (UTS), MPa 250 to 320
660
Tensile Strength: Yield (Proof), MPa 190 to 300
250

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 570
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 890
460
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.9
8.9
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1010
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
240
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 32
22
Strength to Weight: Bending, points 32 to 38
20
Thermal Shock Resistance, points 12 to 16
18

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0.5 to 1.5
0.7 to 1.2
Iron (Fe), % 0 to 1.2
10.2 to 23.6
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 2.0 to 3.0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.7 to 1.5
Zinc (Zn), % 0 to 0.35
0