MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. S42010 Stainless Steel

336.0 aluminum belongs to the aluminum alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.5
18
Fatigue Strength, MPa 80 to 93
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 190 to 250
370
Tensile Strength: Ultimate (UTS), MPa 250 to 320
590
Tensile Strength: Yield (Proof), MPa 190 to 300
350

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 210
800
Melting Completion (Liquidus), °C 570
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.5
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.2
Embodied Energy, MJ/kg 140
30
Embodied Water, L/kg 1010
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
95
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 25 to 32
21
Strength to Weight: Bending, points 32 to 38
20
Thermal Diffusivity, mm2/s 48
7.9
Thermal Shock Resistance, points 12 to 16
21

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0.15 to 0.3
Chromium (Cr), % 0
13.5 to 15
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 0 to 1.2
80.9 to 85.6
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 2.0 to 3.0
0.35 to 0.85
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0