MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. S45500 Stainless Steel

336.0 aluminum belongs to the aluminum alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 130
280 to 500
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.5
3.4 to 11
Fatigue Strength, MPa 80 to 93
570 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Shear Strength, MPa 190 to 250
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 250 to 320
1370 to 1850
Tensile Strength: Yield (Proof), MPa 190 to 300
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 210
760
Melting Completion (Liquidus), °C 570
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 19
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.9
3.8
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 1010
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
45 to 190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 32
48 to 65
Strength to Weight: Bending, points 32 to 38
35 to 42
Thermal Shock Resistance, points 12 to 16
48 to 64

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0.5 to 1.5
1.5 to 2.5
Iron (Fe), % 0 to 1.2
71.5 to 79.2
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 2.0 to 3.0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.25
0.8 to 1.4
Zinc (Zn), % 0 to 0.35
0