MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. 5088 Aluminum

Both 354.0 aluminum and 5088 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4 to 3.0
29
Fatigue Strength, MPa 92 to 120
180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 360 to 380
310
Tensile Strength: Yield (Proof), MPa 280 to 310
150

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
76
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 37 to 39
32
Strength to Weight: Bending, points 42 to 44
38
Thermal Diffusivity, mm2/s 52
51
Thermal Shock Resistance, points 17 to 18
14

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
92.4 to 94.8
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 1.6 to 2.0
0 to 0.25
Iron (Fe), % 0 to 0.2
0.1 to 0.35
Magnesium (Mg), % 0.4 to 0.6
4.7 to 5.5
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Silicon (Si), % 8.6 to 9.4
0 to 0.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15