MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. 5383 Aluminum

Both 354.0 aluminum and 5383 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4 to 3.0
6.7 to 15
Fatigue Strength, MPa 92 to 120
130 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 360 to 380
310 to 370
Tensile Strength: Yield (Proof), MPa 280 to 310
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
97

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
9.0
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
170 to 690
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 37 to 39
32 to 38
Strength to Weight: Bending, points 42 to 44
38 to 42
Thermal Diffusivity, mm2/s 52
51
Thermal Shock Resistance, points 17 to 18
14 to 16

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 1.6 to 2.0
0 to 0.2
Iron (Fe), % 0 to 0.2
0 to 0.25
Magnesium (Mg), % 0.4 to 0.6
4.0 to 5.2
Manganese (Mn), % 0 to 0.1
0.7 to 1.0
Silicon (Si), % 8.6 to 9.4
0 to 0.25
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15