MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. 5652 Aluminum

Both 354.0 aluminum and 5652 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4 to 3.0
6.8 to 25
Fatigue Strength, MPa 92 to 120
60 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 360 to 380
190 to 290
Tensile Strength: Yield (Proof), MPa 280 to 310
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 550
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
40 to 480
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
51
Strength to Weight: Axial, points 37 to 39
20 to 30
Strength to Weight: Bending, points 42 to 44
27 to 36
Thermal Diffusivity, mm2/s 52
57
Thermal Shock Resistance, points 17 to 18
8.4 to 13

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
95.8 to 97.7
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 1.6 to 2.0
0 to 0.040
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 0.4 to 0.6
2.2 to 2.8
Manganese (Mn), % 0 to 0.1
0 to 0.010
Silicon (Si), % 8.6 to 9.4
0 to 0.4
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15