MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. ACI-ASTM CA6N Steel

354.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4 to 3.0
17
Fatigue Strength, MPa 92 to 120
640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 360 to 380
1080
Tensile Strength: Yield (Proof), MPa 280 to 310
1060

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1070
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
180
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
2900
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 37 to 39
38
Strength to Weight: Bending, points 42 to 44
30
Thermal Diffusivity, mm2/s 52
6.1
Thermal Shock Resistance, points 17 to 18
40

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
77.9 to 83.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.6 to 9.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0