MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. AISI 302B Stainless Steel

354.0 aluminum belongs to the aluminum alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4 to 3.0
45
Fatigue Strength, MPa 92 to 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 360 to 380
580
Tensile Strength: Yield (Proof), MPa 280 to 310
230

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
210
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 37 to 39
21
Strength to Weight: Bending, points 42 to 44
20
Thermal Diffusivity, mm2/s 52
4.4
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
65.7 to 73
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.6 to 9.4
2.0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0