MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. AISI 310H Stainless Steel

354.0 aluminum belongs to the aluminum alloys classification, while AISI 310H stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is AISI 310H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4 to 3.0
40
Fatigue Strength, MPa 92 to 120
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 360 to 380
580
Tensile Strength: Yield (Proof), MPa 280 to 310
230

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
190
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 37 to 39
21
Strength to Weight: Bending, points 42 to 44
20
Thermal Diffusivity, mm2/s 52
3.9
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
49.1 to 57
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.6 to 9.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0