MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. AISI 310S Stainless Steel

354.0 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4 to 3.0
34 to 44
Fatigue Strength, MPa 92 to 120
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 360 to 380
600 to 710
Tensile Strength: Yield (Proof), MPa 280 to 310
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
190 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 37 to 39
21 to 25
Strength to Weight: Bending, points 42 to 44
20 to 22
Thermal Diffusivity, mm2/s 52
4.1
Thermal Shock Resistance, points 17 to 18
14 to 16

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
48.3 to 57
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.6 to 9.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0