MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. ASTM A369 Grade FP92

354.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP92 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4 to 3.0
19
Fatigue Strength, MPa 92 to 120
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 360 to 380
710
Tensile Strength: Yield (Proof), MPa 280 to 310
490

Thermal Properties

Latent Heat of Fusion, J/g 530
260
Maximum Temperature: Mechanical, °C 170
590
Melting Completion (Liquidus), °C 600
1490
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1070
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
620
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 37 to 39
25
Strength to Weight: Bending, points 42 to 44
22
Thermal Diffusivity, mm2/s 52
6.9
Thermal Shock Resistance, points 17 to 18
19

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
85.8 to 89.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.6 to 9.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0