MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. ASTM Grade HL Steel

354.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4 to 3.0
11
Fatigue Strength, MPa 92 to 120
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 360 to 380
500
Tensile Strength: Yield (Proof), MPa 280 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 550
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1070
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
48
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 37 to 39
18
Strength to Weight: Bending, points 42 to 44
18
Thermal Shock Resistance, points 17 to 18
11

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
40.8 to 53.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.6 to 9.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0