MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN 1.8898 Steel

354.0 aluminum belongs to the aluminum alloys classification, while EN 1.8898 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4 to 3.0
18
Fatigue Strength, MPa 92 to 120
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 360 to 380
600
Tensile Strength: Yield (Proof), MPa 280 to 310
490

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1070
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
100
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 37 to 39
21
Strength to Weight: Bending, points 42 to 44
20
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 17 to 18
18

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0.020 to 0.060
Carbon (C), % 0
0 to 0.16
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
96.7 to 99.98
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.6 to 9.4
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0