MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN 1.8901 Steel

354.0 aluminum belongs to the aluminum alloys classification, while EN 1.8901 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN 1.8901 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4 to 3.0
19
Fatigue Strength, MPa 92 to 120
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 360 to 380
630
Tensile Strength: Yield (Proof), MPa 280 to 310
490

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1070
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 37 to 39
22
Strength to Weight: Bending, points 42 to 44
21
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 17 to 18
18

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 1.6 to 2.0
0 to 0.6
Iron (Fe), % 0 to 0.2
95 to 99.05
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.6 to 9.4
0 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0 to 0.060
Vanadium (V), % 0
0 to 0.22
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0