MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. EN AC-43200 Aluminum

Both 354.0 aluminum and EN AC-43200 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 2.4 to 3.0
1.1
Fatigue Strength, MPa 92 to 120
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 360 to 380
190 to 260
Tensile Strength: Yield (Proof), MPa 280 to 310
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 530
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
66 to 330
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
54
Strength to Weight: Axial, points 37 to 39
20 to 28
Strength to Weight: Bending, points 42 to 44
28 to 35
Thermal Diffusivity, mm2/s 52
59
Thermal Shock Resistance, points 17 to 18
8.8 to 12

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
86.1 to 90.8
Copper (Cu), % 1.6 to 2.0
0 to 0.35
Iron (Fe), % 0 to 0.2
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 0.6
0.2 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 8.6 to 9.4
9.0 to 11
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.35
Residuals, % 0
0 to 0.15