MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. CC333G Bronze

354.0 aluminum belongs to the aluminum alloys classification, while CC333G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 2.4 to 3.0
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 360 to 380
710
Tensile Strength: Yield (Proof), MPa 280 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 530
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 600
1080
Melting Onset (Solidus), °C 550
1020
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
38
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.8
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1070
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
75
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
410
Stiffness to Weight: Axial, points 15
8.0
Stiffness to Weight: Bending, points 52
20
Strength to Weight: Axial, points 37 to 39
24
Strength to Weight: Bending, points 42 to 44
21
Thermal Diffusivity, mm2/s 52
10
Thermal Shock Resistance, points 17 to 18
24

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 1.6 to 2.0
76 to 83
Iron (Fe), % 0 to 0.2
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.4 to 0.6
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 3.0
Nickel (Ni), % 0
3.7 to 6.0
Silicon (Si), % 8.6 to 9.4
0 to 0.1
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0