MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. C18600 Copper

354.0 aluminum belongs to the aluminum alloys classification, while C18600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 2.4 to 3.0
8.0 to 11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 360 to 380
520 to 580
Tensile Strength: Yield (Proof), MPa 280 to 310
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 530
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
1090
Melting Onset (Solidus), °C 550
1070
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
280
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
70
Electrical Conductivity: Equal Weight (Specific), % IACS 110
71

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 7.8
2.9
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
1060 to 1180
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 37 to 39
16 to 18
Strength to Weight: Bending, points 42 to 44
16 to 17
Thermal Diffusivity, mm2/s 52
81
Thermal Shock Resistance, points 17 to 18
19 to 20

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Chromium (Cr), % 0
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 1.6 to 2.0
96.5 to 99.55
Iron (Fe), % 0 to 0.2
0.25 to 0.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 8.6 to 9.4
0
Titanium (Ti), % 0 to 0.2
0.050 to 0.5
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5