MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. N06650 Nickel

354.0 aluminum belongs to the aluminum alloys classification, while N06650 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.4 to 3.0
50
Fatigue Strength, MPa 92 to 120
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 360 to 380
900
Tensile Strength: Yield (Proof), MPa 280 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
380
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
490
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 37 to 39
29
Strength to Weight: Bending, points 42 to 44
24
Thermal Shock Resistance, points 17 to 18
24

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0.050 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 1.6 to 2.0
0 to 0.3
Iron (Fe), % 0 to 0.2
12 to 16
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.6 to 9.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0