MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. R30006 Cobalt

354.0 aluminum belongs to the aluminum alloys classification, while R30006 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is R30006 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 2.4 to 3.0
1.0
Fatigue Strength, MPa 92 to 120
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 360 to 380
900
Tensile Strength: Yield (Proof), MPa 280 to 310
540

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 550
1290
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
7.8
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
670
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 37 to 39
29
Strength to Weight: Bending, points 42 to 44
24
Thermal Diffusivity, mm2/s 52
3.9
Thermal Shock Resistance, points 17 to 18
26

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0
Carbon (C), % 0
0.9 to 1.4
Chromium (Cr), % 0
27 to 32
Cobalt (Co), % 0
48.6 to 68.1
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
0 to 3.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 8.6 to 9.4
0 to 2.0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0