MakeItFrom.com
Menu (ESC)

354.0 Aluminum vs. R30556 Alloy

354.0 aluminum belongs to the aluminum alloys classification, while R30556 alloy belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 354.0 aluminum and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.4 to 3.0
45
Fatigue Strength, MPa 92 to 120
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 360 to 380
780
Tensile Strength: Yield (Proof), MPa 280 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 7.8
8.7
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.6 to 9.8
290
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 670
290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 37 to 39
26
Strength to Weight: Bending, points 42 to 44
22
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 17 to 18
18

Alloy Composition

Aluminum (Al), % 87.3 to 89.4
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 1.6 to 2.0
0
Iron (Fe), % 0 to 0.2
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.6 to 9.4
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0 to 0.1
0.0010 to 0.1
Residuals, % 0 to 0.15
0