MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. EN 1.3967 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
200
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.5 to 2.6
22
Fatigue Strength, MPa 55 to 70
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 200 to 260
690
Tensile Strength: Yield (Proof), MPa 150 to 190
350

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 180
1070
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 27
24
Strength to Weight: Bending, points 28 to 33
22
Thermal Shock Resistance, points 9.1 to 12
15

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
20 to 21.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
50.3 to 57.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0