MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. EN 1.4662 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.5 to 2.6
28
Fatigue Strength, MPa 55 to 70
430 to 450
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 150 to 240
520 to 540
Tensile Strength: Ultimate (UTS), MPa 200 to 260
810 to 830
Tensile Strength: Yield (Proof), MPa 150 to 190
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150 to 170
15
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1120
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
840 to 940
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 27
29 to 30
Strength to Weight: Bending, points 28 to 33
25
Thermal Diffusivity, mm2/s 60 to 69
3.9
Thermal Shock Resistance, points 9.1 to 12
22

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
23 to 25
Copper (Cu), % 1.0 to 1.5
0.1 to 0.8
Iron (Fe), % 0 to 0.6
62.6 to 70.2
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 5.5
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0