MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. EN 2.4851 Nickel

355.0 aluminum belongs to the aluminum alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.5 to 2.6
34
Fatigue Strength, MPa 55 to 70
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 150 to 240
430
Tensile Strength: Ultimate (UTS), MPa 200 to 260
650
Tensile Strength: Yield (Proof), MPa 150 to 190
230

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 180
1200
Melting Completion (Liquidus), °C 620
1360
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150 to 170
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
170
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20 to 27
22
Strength to Weight: Bending, points 28 to 33
20
Thermal Diffusivity, mm2/s 60 to 69
2.9
Thermal Shock Resistance, points 9.1 to 12
17

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.25
21 to 25
Copper (Cu), % 1.0 to 1.5
0 to 0.5
Iron (Fe), % 0 to 0.6
7.7 to 18
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 5.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0 to 0.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0