MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. Grade CZ100 Nickel

355.0 aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
180
Elongation at Break, % 1.5 to 2.6
11
Fatigue Strength, MPa 55 to 70
68
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
69
Tensile Strength: Ultimate (UTS), MPa 200 to 260
390
Tensile Strength: Yield (Proof), MPa 150 to 190
140

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 560
1300
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 150 to 170
73
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
19
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
35
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
54
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 20 to 27
12
Strength to Weight: Bending, points 28 to 33
14
Thermal Diffusivity, mm2/s 60 to 69
19
Thermal Shock Resistance, points 9.1 to 12
14

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 1.0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 1.0 to 1.5
0 to 1.3
Iron (Fe), % 0 to 0.6
0 to 3.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0