MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. SAE-AISI F1 Steel

355.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI F1 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is SAE-AISI F1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 200 to 260
620 to 2320

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Melting Completion (Liquidus), °C 620
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150 to 170
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1120
46

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 27
22 to 82
Strength to Weight: Bending, points 28 to 33
20 to 49
Thermal Diffusivity, mm2/s 60 to 69
12
Thermal Shock Resistance, points 9.1 to 12
19 to 70

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
1.0 to 1.3
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
95.9 to 98
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0.1 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
1.0 to 1.8
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0