MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. C32000 Brass

355.0 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.5 to 2.6
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
41
Shear Strength, MPa 150 to 240
180 to 280
Tensile Strength: Ultimate (UTS), MPa 200 to 260
270 to 470
Tensile Strength: Yield (Proof), MPa 150 to 190
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
1020
Melting Onset (Solidus), °C 560
990
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 150 to 170
160
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20 to 27
8.8 to 15
Strength to Weight: Bending, points 28 to 33
11 to 16
Thermal Diffusivity, mm2/s 60 to 69
47
Thermal Shock Resistance, points 9.1 to 12
9.5 to 16

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 1.0 to 1.5
83.5 to 86.5
Iron (Fe), % 0 to 0.6
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 4.5 to 5.5
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
10.6 to 15
Residuals, % 0
0 to 0.4